Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011942, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498530

RESUMO

Reducing contributions from non-neuronal sources is a crucial step in functional magnetic resonance imaging (fMRI) connectivity analyses. Many viable strategies for denoising fMRI are used in the literature, and practitioners rely on denoising benchmarks for guidance in the selection of an appropriate choice for their study. However, fMRI denoising software is an ever-evolving field, and the benchmarks can quickly become obsolete as the techniques or implementations change. In this work, we present a denoising benchmark featuring a range of denoising strategies, datasets and evaluation metrics for connectivity analyses, based on the popular fMRIprep software. The benchmark prototypes an implementation of a reproducible framework, where the provided Jupyter Book enables readers to reproduce or modify the figures on the Neurolibre reproducible preprint server (https://neurolibre.org/). We demonstrate how such a reproducible benchmark can be used for continuous evaluation of research software, by comparing two versions of the fMRIprep. Most of the benchmark results were consistent with prior literature. Scrubbing, a technique which excludes time points with excessive motion, combined with global signal regression, is generally effective at noise removal. Scrubbing was generally effective, but is incompatible with statistical analyses requiring the continuous sampling of brain signal, for which a simpler strategy, using motion parameters, average activity in select brain compartments, and global signal regression, is preferred. Importantly, we found that certain denoising strategies behave inconsistently across datasets and/or versions of fMRIPrep, or had a different behavior than in previously published benchmarks. This work will hopefully provide useful guidelines for the fMRIprep users community, and highlight the importance of continuous evaluation of research methods.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos
2.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37744469

RESUMO

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

4.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37131781

RESUMO

Reducing contributions from non-neuronal sources is a crucial step in functional magnetic resonance imaging (fMRI) connectivity analyses. Many viable strategies for denoising fMRI are used in the literature, and practitioners rely on denoising benchmarks for guidance in the selection of an appropriate choice for their study. However, fMRI denoising software is an ever-evolving field, and the benchmarks can quickly become obsolete as the techniques or implementations change. In this work, we present a denoising benchmark featuring a range of denoising strategies, datasets and evaluation metrics for connectivity analyses, based on the popular fMRIprep software. The benchmark is implemented in a fully reproducible framework, where the provided research objects enable readers to reproduce or modify core computations, as well as the figures of the article using the Jupyter Book project and the Neurolibre reproducible preprint server (https://neurolibre.org/). We demonstrate how such a reproducible benchmark can be used for continuous evaluation of research software, by comparing two versions of the fMRIprep software package. The majority of benchmark results were consistent with prior literature. Scrubbing, a technique which excludes time points with excessive motion, combined with global signal regression, is generally effective at noise removal. Scrubbing however disrupts the continuous sampling of brain images and is incompatible with some statistical analyses, e.g. auto-regressive modeling. In this case, a simple strategy using motion parameters, average activity in select brain compartments, and global signal regression should be preferred. Importantly, we found that certain denoising strategies behave inconsistently across datasets and/or versions of fMRIPrep, or had a different behavior than in previously published benchmarks. This work will hopefully provide useful guidelines for the fMRIprep users community, and highlight the importance of continuous evaluation of research methods. Our reproducible benchmark infrastructure will facilitate such continuous evaluation in the future, and may also be applied broadly to different tools or even research fields.

5.
Nat Methods ; 19(12): 1568-1571, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456786

RESUMO

Reference anatomies of the brain ('templates') and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to share their resources under FAIR-findable, accessible, interoperable, and reusable-principles. TemplateFlow enables multifaceted insights into brains across species, and supports multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neuroimagem , Encéfalo , Bases de Dados Factuais , Resolução de Problemas
6.
Neuroimage ; 263: 119623, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100172

RESUMO

Empirical observations of how labs conduct research indicate that the adoption rate of open practices for transparent, reproducible, and collaborative science remains in its infancy. This is at odds with the overwhelming evidence for the necessity of these practices and their benefits for individual researchers, scientific progress, and society in general. To date, information required for implementing open science practices throughout the different steps of a research project is scattered among many different sources. Even experienced researchers in the topic find it hard to navigate the ecosystem of tools and to make sustainable choices. Here, we provide an integrated overview of community-developed resources that can support collaborative, open, reproducible, replicable, robust and generalizable neuroimaging throughout the entire research cycle from inception to publication and across different neuroimaging modalities. We review tools and practices supporting study inception and planning, data acquisition, research data management, data processing and analysis, and research dissemination. An online version of this resource can be found at https://oreoni.github.io. We believe it will prove helpful for researchers and institutions to make a successful and sustainable move towards open and reproducible science and to eventually take an active role in its future development.


Assuntos
Ecossistema , Neuroimagem , Humanos , Neuroimagem/métodos , Projetos de Pesquisa
7.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040302

RESUMO

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.


Assuntos
Ecossistema , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
8.
Front Neurosci ; 16: 871228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516811

RESUMO

The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.

10.
Elife ; 102021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34658334

RESUMO

The sharing of research data is essential to ensure reproducibility and maximize the impact of public investments in scientific research. Here, we describe OpenNeuro, a BRAIN Initiative data archive that provides the ability to openly share data from a broad range of brain imaging data types following the FAIR principles for data sharing. We highlight the importance of the Brain Imaging Data Structure standard for enabling effective curation, sharing, and reuse of data. The archive presently shares more than 600 datasets including data from more than 20,000 participants, comprising multiple species and measurement modalities and a broad range of phenotypes. The impact of the shared data is evident in a growing number of published reuses, currently totalling more than 150 publications. We conclude by describing plans for future development and integration with other ongoing open science efforts.


Assuntos
Encéfalo , Bases de Dados Factuais/estatística & dados numéricos , Disseminação de Informação , Neuroimagem , Neurociências/organização & administração , Humanos
11.
Neuroforum ; 27(1): 17-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36504549

RESUMO

Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated research data management solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or laboratory, a research institute, a domain data archive or cloud computing platform, and a collaborative multisite consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution and present a working system as an exemplary implementation.

12.
Gigascience ; 9(10)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33068112

RESUMO

Metadata are what makes databases searchable. Without them, researchers would have difficulty finding data with features they are interested in. Brain imaging genetics is at the intersection of two disciplines, each with dedicated dictionaries and ontologies facilitating data search and analysis. Here, we present the genetics Brain Imaging Data Structure extension, consisting of metadata files for human brain imaging data to which they are linked, and describe succinctly the genomic and transcriptomic data associated with them, which may be in different databases. This extension will facilitate identifying micro-scale molecular features that are linked to macro-scale imaging repositories, facilitating data aggregation across studies.


Assuntos
Genômica , Metadados , Humanos , Encéfalo/diagnóstico por imagem , Neuroimagem
13.
Nat Protoc ; 15(7): 2186-2202, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514178

RESUMO

Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time consuming, error prone and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep (http://fmriprep.org), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure to standardize both the input datasets (MRI data as stored by the scanner) and the outputs (data ready for modeling and analysis), fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep, this protocol describes how to integrate the tool in a task-based fMRI investigation workflow.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/normas , Padrões de Referência , Descanso/fisiologia , Fluxo de Trabalho
15.
Nat Methods ; 16(1): 111-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532080

RESUMO

Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.


Assuntos
Imageamento por Ressonância Magnética/métodos , Fluxo de Trabalho , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
16.
Comput Brain Behav ; 2(3-4): 229-232, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32440654

RESUMO

The Target Article by Lee et al. (2019) highlights the ways in which ongoing concerns about research reproducibility extend to model-based approaches in cognitive science. Whereas Lee et al. focus primarily on the importance of research practices to improve model robustness, we propose that the transparent sharing of model specifications, including their inputs and outputs, is also essential to improving the reproducibility of model-based analyses. We outline an ongoing effort (within the context of the Brain Imaging Data Structure community) to develop standards for the sharing of the structure of computational models and their outputs.

17.
Neuroimage ; 141: 174-190, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27421186

RESUMO

Speech repetition relies on a series of distributed cortical representations and functional pathways. A speaker must map auditory representations of incoming sounds onto learned speech items, maintain an accurate representation of those items in short-term memory, interface that representation with the motor output system, and fluently articulate the target sequence. A "dorsal stream" consisting of posterior temporal, inferior parietal and premotor regions is thought to mediate auditory-motor representations and transformations, but the nature and activation of these representations for different portions of speech repetition tasks remains unclear. Here we mapped the correlates of phonetic and/or phonological information related to the specific phonemes and syllables that were heard, remembered, and produced using a series of cortical searchlight multi-voxel pattern analyses trained on estimates of BOLD responses from individual trials. Based on responses linked to input events (auditory syllable presentation), predictive vowel-level information was found in the left inferior frontal sulcus, while syllable prediction revealed significant clusters in the left ventral premotor cortex and central sulcus and the left mid superior temporal sulcus. Responses linked to output events (the GO signal cueing overt production) revealed strong clusters of vowel-related information bilaterally in the mid to posterior superior temporal sulcus. For the prediction of onset and coda consonants, input-linked responses yielded distributed clusters in the superior temporal cortices, which were further informative for classifiers trained on output-linked responses. Output-linked responses in the Rolandic cortex made strong predictions for the syllables and consonants produced, but their predictive power was reduced for vowels. The results of this study provide a systematic survey of how cortical response patterns covary with the identity of speech sounds, which will help to constrain and guide theoretical models of speech perception, speech production, and phonological working memory.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Priming de Repetição/fisiologia , Semântica , Percepção da Fala/fisiologia , Fala/fisiologia , Adulto , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA